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Alternating Timed Automata :
-
- -

- What we have seen so far ?

- Model is closed under union , intersection , complement

- Emptiness is undecidable for general ATA

- consider 1 - clock ATA

↳ Expressive power incomparable to many clock NTA .

today:
- Emptiness is decidable for a - dock ATA (idea of proof)

-

complexity of the emptiness problem



Algorithm for the emptiness problem for 1 - ATA :
- - - - - -

Given a 1 - clock ATA A ,
is LCA) empty ?

-

Algorithm similar to Ouaknine- Norell algorithm for universality of l - NTA

- Now we need to handle both Universal and existential transitions .

Assumption:
-

- boolean combinations in the transitions are in

disjunctive normal form

( e n . A .
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Rest of the Algorithm similar to 0W - Os .



Lower bound

Complexity of emptiness of purely universal 1-clock ATA is
not bounded by a primitive recursive function

) complexity of Ouaknine-Worrell algorithm for
universality of 1-clock TA is non-primitive recursive

18/29



Lower bound

Complexity of emptiness of purely universal 1-clock ATA is
not bounded by a primitive recursive function

) complexity of Ouaknine-Worrell algorithm for
universality of 1-clock TA is non-primitive recursive

18/29

NTA: (pure existential ) .
→ cheeking universality of NTA

A

± emptiness of Ac ( purely universal ATA)

reduced

emptiness of purely universal l - ATA - universality of purely
to

existential I-ATA

ENTAT



Primitive recursive functions

Functions f : N 7! N

Basic primitive recursive functions:

I Zero function: Z() = 0

I Successor function: Succ(n) = n + 1

I Projection function: Pi(x1, . . . , xn) = xi

Operations:

I Composition

I Primitive recursion: if f and g are p.r. of arity k and k + 2, there is a
p.r. h of arity k + 1:

h(0, x1, . . . , xk) = f (x1, . . . , xk)

h(n + 1, x1, . . . , xk) = g(h(n, x1, . . . , xk), n, x1, . . . , xk)
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Addition:

Add(0, y) = y
Add(n + 1, y) = Succ(Add(n, y))

Multiplication:

Mult(0, y) = Z()
Mult(n + 1, y) = Add(Mult(n, y), y)

Exponentiation 2n:

Exp(0) = Succ(Z())
Exp(n + 1) = Mult(Exp(n), 2)

Hyper-exponentiation (tower of n two-s):

HyperExp(0) = Succ(Z())
HyperExp(n + 1) = Exp(HyperExp(n))
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Poly

Exp

HyperExp

Primitive recursive

Recursive/Computable

Recursive but not primitive rec.: Ackermann function, Sudan function
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Coming next: a problem that has complexity non-primitive
recursive
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Channel systems

q1

q2

q3

p1 p2

c1!b

c2?c

c2?a

c1?a

c2?a

c1!a c2!c c1?b

a a ab b

a c

channel c1

channel c2

Finite state description of communication protocols
G. von Bochmann. 1978

On communicating finite-state machines
D. Brand and P. Zafiropulo. 1983

Example from Schnoebelen’2002
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Theorem [BZ’83]
Reachability in channel systems is undecidable
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Coming next: modifying the model for decidability

25/29



Lossy channel systems

Finkel’94, Abdulla and Jonsson’96

Messages stored in channel can be lost during transition

Theorem [Schnoebelen’2002]
Reachability for lossy one-channel systems is non-primitive

recursive
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Reachability problem for lossy one-channel systems can be
reduced to emptiness problem for purely universal 1-clock

ATA
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1-clock ATA

I closed under boolean operations

I decidable emptiness problem

I expressivity incomparable to many clock TA

I non-primitive recursive complexity for emptiness

I Other results: Undecidability of:
I 1-clock ATA + "-transitions

I 1-clock ATA over infinite words
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Exercise:

- Construct an ATA for the language consisting of words a
" b 'm such that:

for every
' b ' there is an

'

a
'

at exactly one time unit

before its occurrence

L = E (a" bm
,
T
,
Ta . - - - Tuam ) I n

, m 31 ,

Hj : Ntl Ej Entm ⇒ Fish sit . Tj - Ti = I}



Idea :
-

t
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- - - - - -

- - - - - n

,

a a a
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a a b b :b
t

'

!
-

- -
- -

- - . .
- -

it
= I

a . For every pair of consecutive a 's occurring , say at t and
t
'
:

there is no
' b
' in the open interval ( t -11

,
tht)

2. If the first
'

a
'

occurs at tf ,
there is no

'b
'
in ( tf , tf -11 )

z . If the last '
a
' occurs at te

,
there is no

'

b
' in ( tet '

,
a )

claim : A word w= ( anbm.tl satisfies all the above properties ,
-

iff

W E L
.

Proof : Let w =
a a - . .

a b b . . .
b

-

T
,
Tz Tn Tnn - - - Tntm

Due to 123 and 13) : T
,
ti s Tn+j E Intl HJEEI - rim}

From 4) : Tntj ¢ ( Titi , Tim -117 Hie El . . . h }

Hj E { I - - - m }

Therefore each Tntej E { Ttl , Itt , .
. . , Tn -11 }

Construct ATA for each
, 117,127,137 And take intersection .



For every pair of consecutive a 's occurring , say at t and
t
'
:

there is no
' b
' in the open interval ( tu

,

t't l)

90 I 19 .se .
In } ) A ( go , 0/7 90 b-> go

9N I 19g , Ey 's ) 9N b- 19N , p)
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9g
"b 19 reject . oh qy
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I

Accepting stales : { 90 . 9N . 9g } Reject stales :

' { 9 rejects



- If the first
'

a
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occurs at tf ,
there is no

'b
'
in ( tf , tf -11 )

- If the last '
a
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